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• each additional bit of accuracy corresponds to  

a doubled precision requirements 

10bit = 2-10 = 0,1% 

20bit = 2-20 =1ppm 

• design of data converters needs deep understanding 

of their spectral properties (system theory)  

Basics of Data Conversion 

Each digital signal processing system needs  

a data acquisition channel: ADC and/or DAC 
 

The circuit design of ADC and DAC is the 

most challenging field in analog integrated systems: 
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Basics of Data Conversion 

Spectral properties of ADC / DAC signal 

processing system 
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Basics of Data Conversion 

Signal  processing steps of a DAC 
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Basics of Data Conversion 

Example of a simplest DAC: Resistive ladder network 

10bit DAC:  

•coarse ladder with 16  

accurate taps (dominating the 

linearity) 

 * matrix of 32x32 fine ladder 

resistors, each 64th tap  

connected to coarse ladder 

 

 

only few countermeasures to 

compensate the mismatch effect 

causing nonlinearity (INL) 
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CMOS Scaling challenges 

Modern submicron CMOS technologies causes problems with: 

• decreased Gox thickness => decreased Vdd 

• decreased Vdd => decreased signal range 

• decreased Vdd => switch resistance increases 

• degraded intrinsic gain gm/gds 

• velocity saturation (no unlimited current pushing) 

• increased gate current leakage (due lowering Vth) 

• DIBL => degrades the D-side output impedance  

 

• increased unity gain frequency 

• Improved matching for MOS transistors and MiM caps 

=> demand for new data conversion architectures 

 
©  2017 Richard Izak @ FH Offenburg 



DAC specification parameters 

DAC static parameters: linearity of conversion curve 

Deviations from linear mapping of Din to Vout (straight line) 

Similar to ADC parameter definition => only all DAC errors 

are estimated as vertical y-axis deviation 
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DAC specification parameters 

Static parameters 

• DAC offset error (zero shift), DAC gain error (curve slope) 

 

• Integral (INL) and  

Differential (DNL)   

    Non-Linearity 

 

 D/A converter: 

• DNL < -1LSB implies non-

monotinicity 

• If all codes |INL| <0.5LSB 

=> all |DNL|<1LSB 

 

 



DAC specification parameters 

Dynamic Performance Metrics 

• Time domain: glitch impulse, aperture uncertainity, settling time 

• Frequency domain: SNR, THD, IM2/IM3, SFDR, SNDR (ENOB) 

 

• Important to realize: both static DNL & INL and dynamic errors 

     contribute to frequency domain non-ideality 
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DAC specification parameters 

Dynamic Performance Metrics 

• Frequency domain: SNR, THD, IM2/IM3, SFDR, SNDR 

•                                 noise, distortion,        spurs, noise & distort. 



DAC specification parameters 

Dynamic Performance Metrics 

• Frequency domain:  

     SNR = 20* log (Psig/Pnoise)  in + dB values 

     THD = 20*log (Pharm/Psig)     in – dB values 

     SNDR = 20*log (Psig/Pharm+Pnoise)   in +dB values 

     SFDR = 20*log (Psig/Pdist_max)          in +dB values 
 

     SNDR [dB] = 6,02 * ENOB + 1,76dB 

 Recalculation of Signal purity (SNDR) to effectite number of bits 
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const. therm. noise density  => with increasing DAC bandwidth 

SNR deteriorates (limit the bandwidth as low as needed) 

 ND [dBFS/Hz] = – SNR – 10.log (fs/2) 



DAC architectures 

Capacitive DAC: used within the SAR ADC in FB-loop; 

binary weighted capacitors require large area 

DAC cap-array is re-

used as the sampling 

capacitor @ ADC input 

(hard to drive 30-50pF) 
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DAC architectures 

Bridged Capacitive DAC of a SAR ADC 

Further SAR-ADC modification: 

Non-binary cap-DAC, Dual-trial cap-DAC, Split-cap-DAC 

used to decrease 

overall capacitance 

value in DAC array 
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Current Steering DACs 

Recently most used architectures: for high-speed and/or 

high-resolution DAC 

• inherent high speed operation of MOS current sources 

• ability to drive low-impedance nodes 

• benefits from improved matching in submicron CMOS 

• active cells able to compensate in easier way 
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Current Steering DACs 

Binary weighted current cells: 

+ Simple architecture: N cells for N-bit DAC; no decoding 

logic required 

- Code transitions cause glitches 

- Non-matched current cells causes non-linearity 

(=> large cell area to achieve a certain linearity) 



Current Steering DACs 

Thermometer decoded current cells: 

+ Guaranteed Monotonic, INL same as binary 

+ at major code transitions (MSB) only 1 current cell switched 

+ Matching: 50% good enough for DNL<1/2 LSB 

- Increased area due to large amount of cells: 10bit = 1024 cells 

- Decoding logic required (power & area compromise) 



Current Steering DACs 

Segmented current cells: 

3-6 MSBits encoded into thermometer code using equal current 

cells => improves the monotonicity of DAC 

- Increased monotonicity on the expense of increased nr. of 

elements: 3bit binary vs. 8 elements thermometer / 5bits binary vs. 

32 equal elements 

+ relaxed current cells area due to relaxed matching requirements 



Current Steering DACs 

Segmented current cells: 

INL same as in thermometer DAC 

DNL: 
 

*Worst case occurs when LSB-cells 

turns off and one more MSB cell turns on 
 

*Essentially same DNL as binary weighted 

DAC with Bbin+1 bits 
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Current Steering DACs 

Segmented current cells: Design Trade-Off 
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Current Steering DACs 

Segmented current cells: Design Trade-Off 

Segmenation impacts: 

Area (cell size and number of cells) 

Power consumption 

Distortion performance 



Current Steering DACs 

Binary weighted DAC with unitary currents 

but R-2R loading network 
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Current Steering DAC Cell 

Current Steering DAC cell architecture 

Depending on the required 

accuracy different topolo-

gies are used: 

•Current source cascoded 

•Switched operated in 

triode or in saturation (++) 

•Unipolar or bipolar current 

flows 

•RZ or NRZ switching 
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Current Steering DAC Cell 

Current Steering DAC cell architecture 

Matching: ΔVth and geometric matching (ß=u.Cox.W/L) 

ΔVth dominant => large gate overdrive voltage operation 



Current Steering DACs 

Some ideas on floorplaning in the layout 

a) Row and column floorplaning (switch & cell together) 

b) Current source array separated from switches 
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Current Steering DACs 

Some ideas on floorplaning 

©  2017 Richard Izak @ FH Offenburg 



Current Steering DACs 

Cell Layout floorplaning 
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Current Steering DACs 

Cell Layout floorplaning 
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Current Steering DACs 

Error source of the current pulse at output 

Amplitude Errors: 

• Transistor mismatch (cell-to-cell) 

• IR-drop on supplies (resistor in Vdd-path to cells) 

• Finite output impedance of the cell 

• Supply Disturbance (switching noise) 

• Device Noise 
 

Timing errors: 

• Switch driver mismatch (edge steepness) 

• Clock jitter 

• Device Noise, Supply Noise 
©  2017 Richard Izak @ FH Offenburg 



DAC specification parameters 

Parameter Typical value [unit] 

DAC & Postfilter-Buffer Resolution 20 bit, effect. used 19.6 bit 

DAC & Postfilter-Buffer Accuracy 16 bit 

SNR (signal to noise ratio) in 300kHz band      96 dB @ -1dB FS 1kHz sin 

DAC output voltage noise after Filter & Buffer 400µVpp @ 20MHz BW 

THD (Total Harmonic Distortion) -100dBc @ -1dB FS 1kHz sin 

-90dBc @ -1dB FS 10kHz sin 

-80dBc @ -1dB FS 100kHz sin 

-70dBc @ -1dB FS 1MHz sin 

Spurious Free Dynamic Range (SFDR) -120 dB over 20MHz  

DAC &Buffer DNL (differential non-linearity) @ 20Bit < 1 LSB  

(monotonic @ 20 bit level) 

DAC &Buffer INL (differential non-linearity) @ 20Bit < 32 LSB  

(monotonic @ 20 bit level) 

DAC glitch energy nom. 200 pVs / max. 500 pVs 

DAC Sampling rate fs 100 MS/s  

DAC Data input rate  variable 5-10-20 MS/s 



Current Steering ΣΔ-DACs 

To achieve the 20b linearity requirements as well as the 

SNR of 96dB in 300kHz, a complete different approach 

has to be used, when the power consumption and 

required chip area should not overwhelm the design. 

 

Using Sigma-Delta Modulation digital data stream is 

oversampled and applying this high-speed data stream 

to a single bit DAC-cell with subsequent filtering allows 

to achieve superior linearity. 
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Current Steering ΣΔ-DACs 
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Current Steering ΣΔ-DACs 

+ in-band noise shaped => decreased 

+ inherent linearity with single-bit DAC cell 

+ decreased number of cells, even with ΣΔ-Modulator 

      with 5 bit output (32 current cells) 

 

 - Increased out-of-band noise ( analog filtering needed) 

- Increased frequency of operation (jitter) 

- A high speed data stream has to be provided    

(interpolation) 

- Increased power consumption due to high speed 
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Current Steering ΣΔ-DACs 

Segmentation in Oversampling DACs: 
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Current Steering ΣΔ-DACs 

Segmentation in Oversampling DACs: 
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Current Steering ΣΔ-DACs 

Architecture of 20b linear, 16b noise-free 

oversampling current-steering DAC with analog filter: 
 

3-stage interpolation: 2x 2x 5x each with digital IIR filter 

3th order SD-Modulator, Scrambler (DEM, DWA)  

32 current cells => 38 cells to cover overflow issues 

3th order analog RC-filter (1ord TIA, 2ord OpAmp) 
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Current Steering ΣΔ-DACs 

Choosing the right data bit width for each stage: 24b 

Assessment based on FFT spectrum: distortion (132dB) 
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Current Steering ΣΔ-DACs 

Interpolation of input data: 10MS/s => 100MS/s 
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Current Steering ΣΔ-DACs 

Interpolation of input data: 10MS/s => 100MS/s 
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Current Steering ΣΔ-DACs 

Interpolation of input data: digital IIR low pass 2nd 

order filter 
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Current Steering ΣΔ-DACs 

Interpolation of input data: digital IIR low pass 2nd 

order filter 
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Current Steering ΣΔ-DACs 

Interpolation of input data: spectral verification 
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Current Steering ΣΔ-DACs 

Interpolation of input data: spectral verification 
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Interpolator-IIR-Filter Result : Tone Canceling in 4x Upsampling  

Arising Tones/Spurs 

(Distortion)  

by Upsampling x4  

at 5 and10 MHz  

and Multiples Freq. 

Canceling Tones 

by two IIR dig filters 

(2 interpolation stages) 

up to 20MHz 



Current Steering ΣΔ-DACs 

3rd order Sigma-Delta Modulator 
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Current Steering ΣΔ-DACs 

3rd order Sigma-Delta Modulator: noise shaping  
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shaped out-of-band noise 



Current Steering ΣΔ-DACs 

3rd order digital Sigma-Delta Modulator 

- All coefficient (multiplication) have to be realized by 

Shift-and-Add operation (circumventing true multipliers) 

- Cascade of adders should not limit the delay for the 

10ns clocked operation 
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Current Steering ΣΔ-DACs 

3rd order Sigma-Delta Modulator 

- notch optimization/shift for lowest in-band noise 

 

 

 

 

 

red: 200kHz notch: 

Noise shaping already 

influences 1MHz BW: 

113,4dB vs. 135dB 

 

 



Scrambler 

   

  

  

     

 

 

When a certain cells shows a mismatch of 2%, while 

activating this cell causes distortion. 

When the activation of this unique cell is randomized , 

the distortion is interchanged for noise. (THD↓, SNR↑) 

 

Scrambler / Randomizer is used to select certain 

current cells when each of the 32(38) bits are 

active. There are different algorithms implemented: 

• 4- or 5-level DEM (dynamic element matching) 

• DWA (data weight averaging) over the whole array 

• Splitting array into half: symmetrical DWA 
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Scrambler 

   

  

  

     

 

 

3-level DEM (Dynamic Element Matching) 
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Scrambler 

   

  

  

     

 

 

3-level DEM (Dynamic Element Matching) 
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Scrambler 

DWA (Data Weight Averaging): instead of current 

cell activation from initial point, a vector shows 

which cell has been used last time 
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Scrambler 

DWA (Data Weight Averaging):  beside of init point 

vector, each time also the direction is reversed 
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Scrambler 

Spectral verification: DEM vs. DWA algorithm 



Scrambler 

Spectral verification of DWA algorithms:  

1% mismatch in analog current cell model 



Current Steering ΣΔ-DACs 

Analog-to-Digital Interface: Curret cell driving latches: 

hiCross driver for NMOS / lowCross for PMOS sources 
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Current Steering ΣΔ-DACs 

Analog-to-Digital Interface: Cell driving latches & current cells 
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Current Steering ΣΔ-DACs 

Analog Circuit Block: Complementary Cascode Current Cells 
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Current Steering ΣΔ-DACs 

Spectral verification: SPICE simulation sampled into file. 

Post-processing in a FFT Script in Matlab: SNDR integration 
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Current Steering ΣΔ-DACs 

Spectral verification: ideal latches with Hi/Lo crossing 

(ideal overtaking of current cell between NMOS-PMOS) 
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Current Steering ΣΔ-DACs 

Spectral verification: ideal NMOS curr. source, real PMOS: 

(influence of the limited output resistance of P-current cells) 
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Current Steering ΣΔ-DACs 

Output impedance of the NMOS/PMOS cells 

SPICE Test bench: Fixing the 

switch to a certain position: 

left NMOS on, right PMOS on 

 

V-AC stimulation from the 

output node 
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Current Steering ΣΔ-DACs 

Output AC impedance of the NMOS/PMOS cells 

vs. frequency range of the DAC  
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Current Steering ΣΔ-DACs 

Analog Reconstruction Filtering: SC or activeRC 

©  2017 Richard Izak @ FH Offenburg 



Current Steering ΣΔ-DACs 

   

  

  

     

 

 

Spectral verification: SD-DAC with current cell MC-mismatch and scrambler 

DWA/DEAM enabled; Red: : ∑∆mod & analog current cells (MC mismatch) 

Blue: ∑∆mod & current cells & 3ord 2-stage RC-filter (out-of-band noise filtered) 
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Current Steering ΣΔ-DACs 

   

  

  

     

 

 

Approaches to limit the out-of-band noise: 

Semi-digital filtering applicable to 1bit SD-modulation 
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Current Steering ΣΔ-DACs 

   

  

  

     

 

 

Approaches to limit the out-of-band noise 
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Current Steering ΣΔ-DACs 
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Analog output after 3order 2-stage analog Bessel reconstruction 

filtering: RC-filter with 2 fully differential Amplifiers, no scrambler: 

      SNR = 101dB in 300kHz, but SNDR = 73dB due to harmonics 
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Current Steering ΣΔ-DACs 
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Analog output after 3order 2-stage RC analog Bessel reconstruction 

filtering: DWA randomizer attenuates the harmonics: 

       SNR = 110dB in 300kHz, now SNDR = 97dB suppressed 

harmonics 



   

  

  

     

 

 

©  2017 

Summary 

Different DAC topologies discussed 

DAC Specification Parameters reviewed and 

  discussed regarding achievable values 

Oversampling DAC architecture proposed 

Circuit details and design problems 

Simulation setup and verification approaches 
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