Different concept of D/A-conversion and circuit aspects of a specific 20b DAC

Dr. Richard Izak izak@ieee.org

Hochschule Offenburg, 24.Nov. 2017

Outline

- Basics of Data Conversion (ADC, DAC)
- Specification Parameters of DACs
- Simplest DAC architectures
- Design Challenges of high-speed and high-accuracy DAC
- Oversampling DAC for high precision applications
- Example of a DAC System and Circuit Design
 Summary

Each digital signal processing system needs a data acquisition channel: ADC and/or DAC

The circuit design of ADC and DAC is the most challenging field in analog integrated systems:

- each additional bit of accuracy corresponds to a doubled precision requirements
 10bit = 2⁻¹⁰ = 0,1%
 20bit = 2⁻²⁰ = 1ppm
- design of data converters needs deep understanding of their spectral properties (system theory)

Each digital signal processing system needs a data acquisition channel: ADC and/or DAC

The circuit design of ADC and DAC is the most challenging field in analog integrated systems:

Spectral properties of ADC / DAC signal processing system

Signal processing steps of a DAC

Example of a simplest DAC: Resistive ladder network

10bit DAC:

•coarse ladder with 16 accurate taps (dominating the linearity)

* matrix of 32x32 fine ladder resistors, each 64th tap connected to coarse ladder

only few countermeasures to compensate the mismatch effect causing nonlinearity (INL)

CMOS Scaling challenges

Modern submicron CMOS technologies causes problems with:

- decreased Gox thickness => decreased Vdd
- decreased Vdd => decreased signal range
- decreased Vdd => switch resistance increases
- degraded intrinsic gain gm/gds
- velocity saturation (no unlimited current pushing)
- increased gate current leakage (due lowering Vth)
- DIBL => degrades the D-side output impedance
- increased unity gain frequency
- Improved matching for MOS transistors and MiM caps

=> demand for new data conversion architectures

Richard Izak @ FH Offenburg

© 2017

Ron /

 $V_{GP} - V_{TP}$

RonN

RonP

Ron /

DAC static parameters: linearity of conversion curve Deviations from linear mapping of Din to Vout (straight line) Similar to ADC parameter definition => only all DAC errors are estimated as vertical y-axis deviation

Static parameters

- DAC offset error (zero shift), DAC gain error (curve slope)
- Integral (INL) and
 Differential (DNL)
 Non-Linearity

D/A converter:

- DNL < -1LSB implies nonmonotinicity
- If all codes |INL| <0.5LSB
 => all |DNL|<1LSB

Dynamic Performance Metrics

- <u>Time domain</u>: glitch impulse, aperture uncertainity, settling time
- Frequency domain: SNR, THD, IM2/IM3, SFDR, SNDR (ENOB)
- Important to realize: both static DNL & INL and dynamic errors contribute to frequency domain non-ideality

Dynamic Performance Metrics

Frequency domain: SNR, THD, IM2/IM3, SFDR, SNDR

noise, distortion, spurs, noise & distort.

[Hendriks, "Specifying Communications DACs, IEEE Spectrum, July 1997]

Dynamic Performance Metrics

Frequency domain:

 $\begin{aligned} & \text{SNR} = 20^* \log \left(\text{P}_{\text{sig}} / \text{P}_{\text{noise}} \right) & \text{in + dB values} \\ & \text{THD} = 20^* \log \left(\text{P}_{\text{harm}} / \text{P}_{\text{sig}} \right) & \text{in - dB values} \\ & \text{SNDR} = 20^* \log \left(\text{P}_{\text{sig}} / \text{P}_{\text{harm}} + \text{P}_{\text{noise}} \right) & \text{in + dB values} \\ & \text{SFDR} = 20^* \log \left(\text{P}_{\text{sig}} / \text{P}_{\text{dist}_{\text{max}}} \right) & \text{in + dB values} \end{aligned}$

SNDR [dB] = 6,02 * ENOB + 1,76dB

Recalculation of Signal purity (SNDR) to effectite number of bits

const. therm. noise density => with increasing DAC bandwidth SNR deteriorates (limit the bandwidth as low as needed) ND [dBFS/Hz] = - SNR - 10.log (f_s/2)

DAC architectures

Capacitive DAC: used within the SAR ADC in FB-loop; binary weighted capacitors require large area 32C 16C 8C 4C 2C8C 16C 32C 64C 128C 256C B, \mathbf{B}_1 \mathbf{B}_3 MSB B₄ LSB VINP DAC cap-array is re-used as the sampling V_{INN} P SAR LOGIC capacitor @ ADC input (hard to drive 30-50pF) 16C 32C 64C128C A 256C 8C

Richard Izak @ FH Offenburg

© 2017

DAC architectures

Further SAR-ADC modification:

Non-binary cap-DAC, Dual-trial cap-DAC, Split-cap-DAC

Recently most used architectures: for high-speed and/or high-resolution DAC

- inherent high speed operation of MOS current sources
- ability to drive low-impedance nodes
- benefits from improved matching in submicron CMOS
- active cells able to compensate in easier way

Richard Izak @ FH Offenburg

© 2017

- + Simple architecture: N cells for N-bit DAC; no decoding logic required
- Code transitions cause glitches
- Non-matched current cells causes non-linearity
 (=> large cell area to achieve a certain linearity)

Thermometer decoded current cells:

- + at major code transitions (MSB) only 1 current cell switched
- + Matching: 50% good enough for DNL<1/2 LSB
- Increased area due to large amount of cells: 10bit = 1024 cells
- Decoding logic required (power & area compromise)

Segmented current cells:

3-6 MSBits encoded into thermometer code using equal current cells => improves the monotonicity of DAC

 Increased monotonicity on the expense of increased nr. of elements: 3bit binary vs. 8 elements thermometer / 5bits binary vs.
 32 equal elements

+ relaxed current cells area due to relaxed matching requirements

Segmented current cells:

<u>INL</u> same as in thermometer DAC <u>DNL</u>:

*Worst case occurs when LSB-cells turns off and one more MSB cell turns on

*Essentially same DNL as binary weighted DAC with B_{bin} +1 bits

Example: B=Bb+Bt=4+4=8

Segmented current cells: Design Trade-Off

		Thermometer	Segmented	Binary Weighted
	σ _{INL}		$\cong \frac{1}{2}\sigma_u \sqrt{2^B}$	
	σ _{DNL}	$\cong \sigma_u$	$\cong \sigma_u \sqrt{2^{B_b+1}-1}$	$\cong \sigma_u \sqrt{2^B - 1}$
	Number of Switched Elements	2 ^B – 1	$B_b + 2^{B_l} - 1$	В
Richard	Izak @ FH Offenburg	g	©	2017

Seamented current cells: Design Trade-Off

Distortion performance

Binary weighted DAC with unitary currents but R-2R loading network

Current Steering DAC Cell

Current Steering DAC cell architecture

Depending on the required accuracy different topologies are used:

•Current source cascoded

- •Switched operated in triode or in saturation (++)
- •Unipolar or bipolar current flows
- •RZ or NRZ switching

Current Steering DAC Cell

Current Steering DAC cell architecture

<u>Matching</u>: ΔV th and geometric matching ($B=u.C_{ox}.W/L$) ΔV th dominant => large gate overdrive voltage operation

Some ideas on floorplaning in the layout

a) Row and column floorplaning (switch & cell together)

b) Current source array separated from switches

Some ideas on floorplaning

Cell Layout floorplaning

Cell Layout floorplaning

© 2017

Error source of the current pulse at output <u>Amplitude Errors:</u>

• Transistor mismatch (cell-to-cell)

• IR-drop on supplies (resistor in Vdd-path to cells)

• Finite output impedance of the cell

Supply Disturbance (switching noise)

Device Noise

Timing errors:

• Switch driver mismatch (edge steepness)

Clock jitter

Device Noise, Supply Noise

Parameter	Typical value [unit]	
DAC & Postfilter-Buffer Resolution	20 bit, effect. used 19.6 bit	
DAC & Postfilter-Buffer Accuracy	16 bit	
SNR (signal to noise ratio) in 300kHz band	96 dB @ -1dB FS 1kHz sin	
DAC output voltage noise after Filter & Buffer	400μV _{pp} @ 20MHz BW	
THD (Total Harmonic Distortion)	-100dBc @ -1dB FS 1kHz sin	
	-90dBc @ -1dB FS 10kHz sin	
	-80dBc @ -1dB FS 100kHz sin	
	-70dBc @ -1dB FS 1MHz sin	
Spurious Free Dynamic Range (SFDR)	-120 dB over 20MHz	
DAC & Buffer DNL (differential non-linearity) @ 20Bit	< 1 LSB	
	(monotonic @ 20 bit level)	
DAC & Buffer INL (differential non-linearity) @ 20Bit	< 32 LSB	
	(monotonic @ 20 bit level)	
DAC glitch energy	nom. 200 pVs / max. 500 pVs	
DAC Sampling rate fs	100 MS/s	
DAC Data input rate	variable 5-10-20 MS/s	

To achieve the 20b linearity requirements as well as the SNR of 96dB in 300kHz, a complete different approach has to be used, when the power consumption and required chip area should not overwhelm the design.

Using Sigma-Delta Modulation digital data stream is oversampled and applying this high-speed data stream to a single bit DAC-cell with subsequent filtering allows to achieve superior linearity.

Richard Izak @ FH Offenburg

© 2017

- + in-band noise shaped => decreased
- + inherent linearity with single-bit DAC cell
- + decreased number of cells, even with ΣΔ-Modulator
 with 5 bit output (32 current cells)
- Increased out-of-band noise (analog filtering needed)
- Increased frequency of operation (jitter)
- A high speed data stream has to be provided (interpolation)
- Increased power consumption due to high speed

Segmentation in Oversampling DACs:

Richard Izak @ FH Offenburg

© 2017

Segmentation in Oversampling DACs:

<u>Architecture of 20b linear, 16b noise-free</u> <u>oversampling current-steering DAC with analog filter:</u>

3-stage interpolation: 2x 2x 5x each with digital IIR filter

3th order SD-Modulator, Scrambler (DEM, DWA)

32 current cells => 38 cells to cover overflow issues

3th order analog RC-filter (1ord TIA, 2ord OpAmp)

Richard Izak

Choosing the right data bit width for each stage: 24b Assessment based on FFT spectrum: distortion (132dB)

Interpolation of input data: 10MS/s => 100MS/s

Interpolation of input data: 10MS/s => 100MS/s

Interpolation of input data: digital IIR low pass 2nd order filter

Interpolation of input data: digital IIR low pass 2nd order filter

Interpolation of input data: spectral verification

Interpolation of input data: spectral verification Interpolator-IIR-Filter Result : Tone Canceling in 4x Upsampling

Arising Tones/Spurs (Distortion) by Upsampling x4 at 5 and10 MHz and Multiples Freq.

Canceling Tones by two IIR dig filters (2 interpolation stages) up to 20MHz

Richard Izak @ FH Offenburg

3rd order Sigma-Delta Modulator

3rd order Sigma-Delta Modulator: noise shaping

3rd order digital Sigma-Delta Modulator

- All coefficient (multiplication) have to be realized by Shift-and-Add operation (circumventing true multipliers)
- Cascade of adders should not limit the delay for the 10ns clocked operation

3rd order Sigma-Delta Modulatornotch optimization/shift for lowest in-band noise

When a certain cells shows a mismatch of 2%, while activating this cell causes distortion.
When the activation of this unique cell is randomized, the distortion is interchanged for noise. (THD↓, SNR↑)

Scrambler / Randomizer is used to select certain current cells when each of the 32(38) bits are active. There are different algorithms implemented:

- 4- or 5-level DEM (dynamic element matching)
- DWA (data weight averaging) over the whole array
- Splitting array into half: symmetrical DWA

3-level DEM (Dynamic Element Matching)

3-level DEM (Dynamic Element Matching)

 Figure 7.14
 Segmentation and scrambling 3-to-7 binary-to-thermometer encoding circuit implemented by a GCN.

 Richard Izak @ FH Offenburg
 © 2017

<u>DWA (Data Weight Averaging):</u> instead of current cell activation from initial point, a vector shows which cell has been used last time

<u>DWA (Data Weight Averaging)</u>: beside of init point vector, each time also the direction is reversed

Figure 18. The DWA operation principle

Figure 25. The Bi-DWA operation principle.

Spectral verification: DEM vs. DWA algorithm

Spectral verification of DWA algorithms: 1% mismatch in analog current cell model

Analog-to-Digital Interface: Curret cell driving latches: hiCross driver for NMOS / lowCross for PMOS sources

Analog-to-Digital Interface: Cell driving latches & current cells

Analog Circuit Block: Complementary Cascode Current Cells

<u>Spectral verification</u>: SPICE simulation sampled into file. Post-processing in a FFT Script in Matlab: SNDR integration

Richard Izak @ FH Offenburg

© 2017

<u>Spectral verification</u>: ideal latches with Hi/Lo crossing (ideal overtaking of current cell between NMOS-PMOS)

Richard Izak @ FH Offenburg

© 2017

Spectral verification: ideal NMOS curr. source, real PMOS: (influence of the limited output resistance of P-current cells)

Output impedance of the NMOS/PMOS cells

SPICE Test bench: Fixing the switch to a certain position: left NMOS on, right PMOS on

V-AC stimulation from the output node

Output AC impedance of the NMOS/PMOS cells vs. frequency range of the DAC

Analog Reconstruction Filtering: SC or activeRC

© 2017

<u>Spectral verification</u>: SD-DAC with current cell MC-mismatch and scrambler DWA/DEAM enabled; <u>Red:</u> ∑∆mod & analog current cells (MC mismatch)
 <u>Blue:</u> ∑∆mod & current cells & 3ord 2-stage RC-filter (out-of-band noise filtered)

Approaches to limit the out-of-band noise: Semi-digital filtering applicable to 1bit SD-modulation

Approaches to limit the out-of-band noise

© 2017

Analog output after 3order 2-stage analog Bessel reconstruction filtering: RC-filter with 2 fully differential Amplifiers, no scrambler: SNR = 101dB in 300kHz, but SNDR = 73dB due to harmonics

Analog output after 3order 2-stage RC analog Bessel reconstruction filtering: DWA randomizer attenuates the harmonics:

SNR = 110dB in 300kHz, now SNDR = 97dB suppressed

Summary

Different DAC topologies discussed
 DAC Specification Parameters reviewed and discussed regarding achievable values
 Oversampling DAC architecture proposed
 Circuit details and design problems
 Simulation setup and verification approaches

